Differentiation of Human Adipose-Derived Stem Cells into “Brite” (Brown-in-White) Adipocytes
نویسندگان
چکیده
It is well established now that adult humans possess active brown adipose tissue (BAT) which represents a potential pharmacological target to combat obesity and associated diseases. Moreover thermogenic brown-like adipocytes ("brite adipocytes") appear also in mouse white adipose tissue (WAT) upon β3-adrenergic stimulation. We had previously shown that human multipotent adipose-derived stem cells (hMADS) are able to differentiate into cells which exhibit the key properties of human white adipocytes, and then to convert into functional brown adipocytes upon PPARγ activation. In light of a wealth of data indicating that thermogenic adipocytes from BAT and WAT have a distinct cellular origin, we have characterized at the molecular level UCP1 positive hMADS adipocytes from both sexes as brite adipocytes. Conversion of white to brown hMADS adipocytes is dependent on PPARγ activation with rosiglitazone as the most potent agonist and is inhibited by a PPARγ antagonist. In contrast to mouse cellular models, hMADS cells conversion into brown adipocytes is weakly induced by BMP7 treatment and not modulated by activation of the Hedgehog pathway. So far no primary or clonal precursor cells of human brown adipocytes have been obtained that can be used as a tool to develop therapeutic drugs and to gain further insights into the molecular mechanisms of brown adipogenesis in humans. Thus hMADS cells represent a suitable human cell model to delineate the formation and/or the uncoupling capacity of brown/brite adipocytes that could help to dissipate caloric excess intake among individuals.
منابع مشابه
Changing white into brite adipocytes. Focus on "BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells".
While white adipose tissue (AT) is an energy storage depot, brown AT is specialized in energy dissipation. Uncoupling protein 1 (UCP1)-expressing adipocytes with a different origin than classical brown adipocytes have been found in white AT. These "brite" (brown-in-white) adipocytes may represent a therapeutic target to counteract obesity. Bone morphogenetic proteins (BMPs) play a role in the r...
متن کاملThe Heat is on: A New Avenue to Study Brown Fat Formation in Humans
The ever increasing rates of obesity and its co-morbidities represent a significant worldwide health problem (Pijl, 2011). An effective and innovative strategy to reduce body weight would be to increase energy expenditure by altering the character of adipose tissue in the body. This approach does not merely aim to eliminate, white adipose tissue (WAT), our reservoirs of energy storage. Rather, ...
متن کاملmiR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function
OBJECTIVE In rodents and humans, besides brown adipose tissue (BAT), islands of thermogenic adipocytes, termed "brite" (brown-in-white) or beige adipocytes, emerge within white adipose tissue (WAT) after cold exposure or β3-adrenoceptor stimulation, which may protect from obesity and associated diseases. microRNAs are novel modulators of adipose tissue development and function. The purpose of t...
متن کاملShades of Brown: A Model for Thermogenic Fat
Brown adipose tissue (BAT) is specialized to burn fuels to perform thermogenesis in defense of body temperature against cold. Recent discovery of metabolically active and relevant amounts of BAT in adult humans have made it a potentially attractive target for development of anti-obesity therapeutics. There are two types of brown adipocytes: classical brown adipocytes and brown adipocyte-like ce...
متن کاملIsolation and differentiation of stromal vascular cells to beige/brite cells.
Brown adipocytes have the ability to uncouple the respiratory chain in mitochondria and dissipate chemical energy as heat. Development of UCP1-positive brown adipocytes in white adipose tissues (so called beige or brite cells) is highly induced by a variety of environmental cues such as chronic cold exposure or by PPARγ agonists, therefore, this cell type has potential as a therapeutic target f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2011